p-group, metabelian, nilpotent (class 2), monomial
Aliases: C22.44C25, C23.21C24, C24.486C23, C42.546C23, C4⋊Q8⋊77C22, (C4×D4)⋊97C22, (C4×Q8)⋊31C22, C4⋊C4.285C23, C4⋊1D4⋊45C22, (C2×C4).164C24, (C2×C42)⋊47C22, C22⋊Q8⋊78C22, C4○(C22.32C24), (C2×D4).293C23, C4.4D4⋊67C22, C22⋊C4.11C23, (C2×Q8).426C23, C42.C2⋊42C22, C42⋊2C2⋊25C22, C22.32C24⋊28C2, C22.19C24⋊14C2, C42⋊C2⋊91C22, C22≀C2.21C22, C4⋊D4.218C22, C2.5(C2.C25), (C23×C4).588C22, C4○(C22.35C24), C4○(C22.34C24), C4○(C22.33C24), C4○(C22.36C24), (C22×C4).1184C23, C22.26C24⋊27C2, C22.D4⋊37C22, C22.36C24⋊45C2, C22.35C24⋊28C2, C22.34C24⋊30C2, C23.37C23⋊28C2, C22.33C24⋊28C2, C23.36C23⋊17C2, (C4×C4○D4)⋊17C2, C4.75(C2×C4○D4), C22.10(C2×C4○D4), C2.21(C22×C4○D4), (C2×C42⋊C2)⋊58C2, (C2×C4).718(C4○D4), (C2×C4⋊C4).950C22, (C2×C4)○(C22.32C24), (C2×C4○D4).322C22, (C2×C22⋊C4).533C22, (C2×C4)○(C22.35C24), (C2×C4)○(C22.36C24), SmallGroup(128,2187)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.44C25
G = < a,b,c,d,e,f,g | a2=b2=c2=e2=f2=1, d2=b, g2=a, ab=ba, dcd-1=fcf=ac=ca, ede=ad=da, ae=ea, af=fa, ag=ga, ece=bc=cb, bd=db, be=eb, bf=fb, bg=gb, cg=gc, df=fd, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 732 in 520 conjugacy classes, 388 normal (20 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, C24, C2×C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C4×D4, C4×Q8, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C42⋊2C2, C4⋊1D4, C4⋊Q8, C4⋊Q8, C23×C4, C2×C4○D4, C2×C42⋊C2, C4×C4○D4, C22.19C24, C23.36C23, C22.26C24, C23.37C23, C22.32C24, C22.33C24, C22.34C24, C22.35C24, C22.36C24, C22.44C25
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, C25, C22×C4○D4, C2.C25, C22.44C25
(1 15)(2 16)(3 13)(4 14)(5 18)(6 19)(7 20)(8 17)(9 24)(10 21)(11 22)(12 23)(25 30)(26 31)(27 32)(28 29)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 31)(2 27)(3 29)(4 25)(5 21)(6 11)(7 23)(8 9)(10 18)(12 20)(13 28)(14 30)(15 26)(16 32)(17 24)(19 22)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(2 16)(4 14)(5 18)(7 20)(9 11)(10 23)(12 21)(22 24)(25 32)(26 28)(27 30)(29 31)
(1 3)(2 4)(5 7)(6 8)(9 22)(10 23)(11 24)(12 21)(13 15)(14 16)(17 19)(18 20)(25 32)(26 29)(27 30)(28 31)
(1 17 15 8)(2 18 16 5)(3 19 13 6)(4 20 14 7)(9 31 24 26)(10 32 21 27)(11 29 22 28)(12 30 23 25)
G:=sub<Sym(32)| (1,15)(2,16)(3,13)(4,14)(5,18)(6,19)(7,20)(8,17)(9,24)(10,21)(11,22)(12,23)(25,30)(26,31)(27,32)(28,29), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,31)(2,27)(3,29)(4,25)(5,21)(6,11)(7,23)(8,9)(10,18)(12,20)(13,28)(14,30)(15,26)(16,32)(17,24)(19,22), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (2,16)(4,14)(5,18)(7,20)(9,11)(10,23)(12,21)(22,24)(25,32)(26,28)(27,30)(29,31), (1,3)(2,4)(5,7)(6,8)(9,22)(10,23)(11,24)(12,21)(13,15)(14,16)(17,19)(18,20)(25,32)(26,29)(27,30)(28,31), (1,17,15,8)(2,18,16,5)(3,19,13,6)(4,20,14,7)(9,31,24,26)(10,32,21,27)(11,29,22,28)(12,30,23,25)>;
G:=Group( (1,15)(2,16)(3,13)(4,14)(5,18)(6,19)(7,20)(8,17)(9,24)(10,21)(11,22)(12,23)(25,30)(26,31)(27,32)(28,29), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,31)(2,27)(3,29)(4,25)(5,21)(6,11)(7,23)(8,9)(10,18)(12,20)(13,28)(14,30)(15,26)(16,32)(17,24)(19,22), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (2,16)(4,14)(5,18)(7,20)(9,11)(10,23)(12,21)(22,24)(25,32)(26,28)(27,30)(29,31), (1,3)(2,4)(5,7)(6,8)(9,22)(10,23)(11,24)(12,21)(13,15)(14,16)(17,19)(18,20)(25,32)(26,29)(27,30)(28,31), (1,17,15,8)(2,18,16,5)(3,19,13,6)(4,20,14,7)(9,31,24,26)(10,32,21,27)(11,29,22,28)(12,30,23,25) );
G=PermutationGroup([[(1,15),(2,16),(3,13),(4,14),(5,18),(6,19),(7,20),(8,17),(9,24),(10,21),(11,22),(12,23),(25,30),(26,31),(27,32),(28,29)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,31),(2,27),(3,29),(4,25),(5,21),(6,11),(7,23),(8,9),(10,18),(12,20),(13,28),(14,30),(15,26),(16,32),(17,24),(19,22)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(2,16),(4,14),(5,18),(7,20),(9,11),(10,23),(12,21),(22,24),(25,32),(26,28),(27,30),(29,31)], [(1,3),(2,4),(5,7),(6,8),(9,22),(10,23),(11,24),(12,21),(13,15),(14,16),(17,19),(18,20),(25,32),(26,29),(27,30),(28,31)], [(1,17,15,8),(2,18,16,5),(3,19,13,6),(4,20,14,7),(9,31,24,26),(10,32,21,27),(11,29,22,28),(12,30,23,25)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | ··· | 2K | 4A | 4B | 4C | 4D | 4E | ··· | 4N | 4O | ··· | 4AF |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | ··· | 4 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4○D4 | C2.C25 |
kernel | C22.44C25 | C2×C42⋊C2 | C4×C4○D4 | C22.19C24 | C23.36C23 | C22.26C24 | C23.37C23 | C22.32C24 | C22.33C24 | C22.34C24 | C22.35C24 | C22.36C24 | C2×C4 | C2 |
# reps | 1 | 1 | 2 | 2 | 8 | 1 | 1 | 4 | 4 | 2 | 2 | 4 | 8 | 4 |
Matrix representation of C22.44C25 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 4 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 2 | 3 | 1 | 3 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 4 | 0 | 2 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 3 | 2 | 4 | 2 |
0 | 0 | 3 | 2 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 2 | 0 | 1 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 2 | 3 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 3 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,4,0,0,0,0,4,0,0,0,0,0,0,0,0,2,1,1,0,0,0,3,0,4,0,0,1,1,0,0,0,0,0,3,0,2],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,1,3,3,0,0,1,0,2,2,0,0,0,0,4,0,0,0,0,0,2,1],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,2,0,0,0,4,0,0,0,0,0,0,1,1,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,2,0,0,0,1,0,3,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3] >;
C22.44C25 in GAP, Magma, Sage, TeX
C_2^2._{44}C_2^5
% in TeX
G:=Group("C2^2.44C2^5");
// GroupNames label
G:=SmallGroup(128,2187);
// by ID
G=gap.SmallGroup(128,2187);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,456,1430,387,1123,102]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=e^2=f^2=1,d^2=b,g^2=a,a*b=b*a,d*c*d^-1=f*c*f=a*c=c*a,e*d*e=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*g=g*c,d*f=f*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations